首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19070篇
  免费   2259篇
  国内免费   3646篇
测绘学   1506篇
大气科学   2923篇
地球物理   2822篇
地质学   7266篇
海洋学   2018篇
天文学   5400篇
综合类   1038篇
自然地理   2002篇
  2024年   43篇
  2023年   168篇
  2022年   411篇
  2021年   473篇
  2020年   514篇
  2019年   617篇
  2018年   537篇
  2017年   592篇
  2016年   640篇
  2015年   749篇
  2014年   1023篇
  2013年   1168篇
  2012年   1144篇
  2011年   1219篇
  2010年   1175篇
  2009年   1598篇
  2008年   1651篇
  2007年   1533篇
  2006年   1462篇
  2005年   1270篇
  2004年   1105篇
  2003年   958篇
  2002年   784篇
  2001年   707篇
  2000年   646篇
  1999年   557篇
  1998年   450篇
  1997年   298篇
  1996年   207篇
  1995年   226篇
  1994年   210篇
  1993年   205篇
  1992年   119篇
  1991年   85篇
  1990年   78篇
  1989年   63篇
  1988年   60篇
  1987年   23篇
  1986年   35篇
  1985年   38篇
  1984年   30篇
  1983年   21篇
  1982年   17篇
  1981年   12篇
  1980年   19篇
  1979年   3篇
  1978年   7篇
  1977年   15篇
  1976年   2篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
152.
《山西地震综合数据处理系统》是遵循《国家地震局数据库技术规范》,以PDP-11/23~+小型机与IBM/PC联机为硬件支撑,以网状型数据库为核心,含前期处理、库管理、数据检索、科学计算、分析会商5个子系统的较大型应用软件系统。具有对数据进行收集、录入、预处理、存储、管理、加工及应用等功能。整个系统通过总控菜单程序实现了异种机间上百个模块的调度,使查询-处理一体化。该系统把地震数据库、日常监测数据处理、专家地震预报系统有机地衔接于一体,可直接服务于地震科研和震情会商。该系统的建设是山西省重大科技攻关项目,也是国家地震局的合同制项目。  相似文献   
153.
本文着重描述了SGR钻孔处冰盖上的积雪在密实化过程中的特征变化,并对该过程进行了分段的和全面的回归分析.结果表明,冰盖密度随深度增大,但增长幅度随深度减小.作者提出密度变化减小度的概念.计算得出的所研究冰芯钻取点的密度变化减小度为-0.15kg/m~3·m~2,粒雪成冰前的密实速率平均值为4.08kg/m~3·a.本文得到的冰盖密度变化“临界点”与以往报道的有所不同.分析这一现象时,作者强调当积雪还在活动层时冰盖温度的影响,并以此解释密度剖面的异常变化以及离差的回升.特别指出,积雪的密度变化具有气候学意义,它在一定程度上能够反映出积雪形成及变化过程中气候变化的某些信息.本文由密度变化确定的钻孔点雪冰转化深度为50米.  相似文献   
154.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   
155.
The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155–156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145–146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
156.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

157.
A high‐speed digital camera was employed to record the sand grain/bed collision process. With image processing and a statistical method, a series of parameters of the collision process were obtained. The results show that the collision process of a grain with rebounding can be represented by two parameters: the kinetic energy restitution coefficient and the collision angle. Both parameters satisfy a normal distribution, and they are dependent on one another. With an increase of the collision angle, the distribution of the kinetic energy restitution gradually reduces from a broad to a narrow range with low values. The percentage of vertical velocity restitution coefficients greater than 1 can reach 70% or more, which ensures that the settling time of the sand grains in the air increases and that they receive more energy from the air to progress the saltation movement.  相似文献   
158.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

159.
Chemical structure of Jurassic vitrinites isolated from the coals in basins in NW China have been checked using solid state 13C NMR and flash pyrolysis-GC/MS. Study shows some Jurassic collodetrinites are rich in aliphatic products in pyrolysates, consisting with the high amount of methylene carbon in 13C NMR spectra. In contrast, pyrolysates of Jurassic collotelinites are rich in phenols and alkylbenzenes. Also one Pennsylvanian and one Permian vitrinite selected from the Ordos basin, NW China have been checked for comparison. The proportion of aliphatics is low in pyrolysates, and aliphatic carbon peak in 13C NMR spectrum of Permian vitrinite is mostly composed of gas-prone carbons compared with collodetrinites in those Jurassic basins. But both pyrolysis and 13C NMR data shows the Pennsylvanian vitrinite is not only gas-prone but also oil-prone. Relatively high proportion of long chain aliphatic structure of some Jurassic vitrinite in Junggar, Turpan-Hami basins may be due to the contribution of liptodetrinites, which may be included during the formation of vitrinites. And it seems that suberinite is the most possible precursor of long chain aliphatics in the structure of Jurassic collodetrinite.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号